1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//! Incremental solving.

use partial_ref::{partial, PartialRef};

use varisat_formula::Lit;
use varisat_internal_proof::{clause_hash, lit_hash, ClauseHash, ProofStep};

use crate::context::{parts::*, Context};
use crate::proof;
use crate::prop::{enqueue_assignment, full_restart, Reason};
use crate::state::SatState;
use crate::variables;

/// Incremental solving.
#[derive(Default)]
pub struct Assumptions {
    assumptions: Vec<Lit>,
    failed_core: Vec<Lit>,
    user_failed_core: Vec<Lit>,
    assumption_levels: usize,
    failed_propagation_hashes: Vec<ClauseHash>,
}

impl Assumptions {
    /// Current number of decision levels used for assumptions.
    pub fn assumption_levels(&self) -> usize {
        self.assumption_levels
    }

    /// Resets assumption_levels to zero on a full restart.
    pub fn full_restart(&mut self) {
        self.assumption_levels = 0;
    }

    /// Subset of assumptions that made the formula unsatisfiable.
    pub fn failed_core(&self) -> &[Lit] {
        &self.failed_core
    }

    /// Subset of assumptions that made the formula unsatisfiable.
    pub fn user_failed_core(&self) -> &[Lit] {
        &self.user_failed_core
    }

    /// Current assumptions.
    pub fn assumptions(&self) -> &[Lit] {
        &self.assumptions
    }
}

/// Return type of [`enqueue_assumption`].
pub enum EnqueueAssumption {
    Done,
    Enqueued,
    Conflict,
}

/// Change the currently active assumptions.
///
/// The input uses user variable names.
pub fn set_assumptions<'a>(
    mut ctx: partial!(
        Context<'a>,
        mut AnalyzeConflictP,
        mut AssignmentP,
        mut AssumptionsP,
        mut BinaryClausesP,
        mut ImplGraphP,
        mut ProofP<'a>,
        mut SolverStateP,
        mut TmpFlagsP,
        mut TrailP,
        mut VariablesP,
        mut VsidsP,
        mut WatchlistsP,
    ),
    user_assumptions: &[Lit],
) {
    full_restart(ctx.borrow());

    let state = ctx.part_mut(SolverStateP);

    state.sat_state = match state.sat_state {
        SatState::Unsat => SatState::Unsat,
        SatState::Sat | SatState::UnsatUnderAssumptions | SatState::Unknown => SatState::Unknown,
    };

    let (assumptions, mut ctx_2) = ctx.split_part_mut(AssumptionsP);

    for lit in assumptions.assumptions.iter() {
        ctx_2
            .part_mut(VariablesP)
            .var_data_solver_mut(lit.var())
            .assumed = false;
    }

    variables::solver_from_user_lits(
        ctx_2.borrow(),
        &mut assumptions.assumptions,
        user_assumptions,
        true,
    );

    for lit in assumptions.assumptions.iter() {
        ctx_2
            .part_mut(VariablesP)
            .var_data_solver_mut(lit.var())
            .assumed = true;
    }

    proof::add_step(
        ctx_2.borrow(),
        true,
        &ProofStep::Assumptions {
            assumptions: &assumptions.assumptions,
        },
    );
}

/// Enqueue another assumption if possible.
///
/// Returns whether an assumption was enqueued, whether no assumptions are left or whether the
/// assumptions result in a conflict.
pub fn enqueue_assumption<'a>(
    mut ctx: partial!(
        Context<'a>,
        mut AssignmentP,
        mut AssumptionsP,
        mut ImplGraphP,
        mut ProofP<'a>,
        mut SolverStateP,
        mut TmpFlagsP,
        mut TrailP,
        ClauseAllocP,
        VariablesP,
    ),
) -> EnqueueAssumption {
    while let Some(&assumption) = ctx
        .part(AssumptionsP)
        .assumptions
        .get(ctx.part(TrailP).current_level())
    {
        match ctx.part(AssignmentP).lit_value(assumption) {
            Some(false) => {
                analyze_assumption_conflict(ctx.borrow(), assumption);
                return EnqueueAssumption::Conflict;
            }
            Some(true) => {
                // The next assumption is already implied by other assumptions so we can remove it.
                let level = ctx.part(TrailP).current_level();
                let assumptions = ctx.part_mut(AssumptionsP);
                assumptions.assumptions.swap_remove(level);
            }
            None => {
                ctx.part_mut(TrailP).new_decision_level();
                enqueue_assignment(ctx.borrow(), assumption, Reason::Unit);
                let (assumptions, ctx) = ctx.split_part_mut(AssumptionsP);
                assumptions.assumption_levels = ctx.part(TrailP).current_level();
                return EnqueueAssumption::Enqueued;
            }
        }
    }
    EnqueueAssumption::Done
}

/// Analyze a conflicting set of assumptions.
///
/// Compute a set of incompatible assumptions given an assumption that is incompatible with the
/// assumptions enqueued so far.
fn analyze_assumption_conflict<'a>(
    mut ctx: partial!(
        Context<'a>,
        mut AssumptionsP,
        mut ProofP<'a>,
        mut SolverStateP,
        mut TmpFlagsP,
        ClauseAllocP,
        ImplGraphP,
        TrailP,
        VariablesP,
    ),
    assumption: Lit,
) {
    let (assumptions, mut ctx) = ctx.split_part_mut(AssumptionsP);
    let (tmp, mut ctx) = ctx.split_part_mut(TmpFlagsP);
    let (trail, mut ctx) = ctx.split_part(TrailP);
    let (impl_graph, mut ctx) = ctx.split_part(ImplGraphP);

    let flags = &mut tmp.flags;

    assumptions.failed_core.clear();
    assumptions.failed_core.push(assumption);

    assumptions.failed_propagation_hashes.clear();

    flags[assumption.index()] = true;
    let mut flag_count = 1;

    for &lit in trail.trail().iter().rev() {
        if flags[lit.index()] {
            flags[lit.index()] = false;
            flag_count -= 1;

            match impl_graph.reason(lit.var()) {
                Reason::Unit => {
                    if impl_graph.level(lit.var()) > 0 {
                        assumptions.failed_core.push(lit);
                    }
                }
                reason => {
                    let (ctx_lits, ctx) = ctx.split_borrow();
                    let reason_lits = reason.lits(&ctx_lits);

                    if ctx.part(ProofP).clause_hashes_required() {
                        let hash = clause_hash(reason_lits) ^ lit_hash(lit);
                        assumptions.failed_propagation_hashes.push(hash);
                    }

                    for &reason_lit in reason_lits {
                        if !flags[reason_lit.index()] {
                            flags[reason_lit.index()] = true;
                            flag_count += 1;
                        }
                    }
                }
            }

            if flag_count == 0 {
                break;
            }
        }
    }

    assumptions.failed_propagation_hashes.reverse();

    assumptions.user_failed_core.clear();
    assumptions
        .user_failed_core
        .extend(assumptions.failed_core.iter().map(|solver_lit| {
            let user_lit = solver_lit
                .map_var(|solver_var| ctx.part(VariablesP).existing_user_from_solver(solver_var));
            user_lit
        }));

    proof::add_step(
        ctx.borrow(),
        true,
        &ProofStep::FailedAssumptions {
            failed_core: &assumptions.failed_core,
            propagation_hashes: &assumptions.failed_propagation_hashes,
        },
    );
}

#[cfg(test)]
mod tests {
    use super::*;

    use proptest::{bool, prelude::*};

    use partial_ref::IntoPartialRefMut;

    use varisat_formula::{test::conditional_pigeon_hole, ExtendFormula, Var};

    use crate::cdcl::conflict_step;
    use crate::load::load_clause;
    use crate::solver::Solver;
    use crate::state::SatState;

    proptest! {
        #[test]
        fn pigeon_hole_unsat_assumption_core_internal(
            (enable_row, columns, formula) in conditional_pigeon_hole(1..5usize, 1..5usize),
            chain in bool::ANY,
        ) {
            let mut ctx = Context::default();
            let mut ctx = ctx.into_partial_ref_mut();

            for clause in formula.iter() {
                load_clause(ctx.borrow(), clause);
            }

            if chain {
                for (&a, &b) in enable_row.iter().zip(enable_row.iter().skip(1)) {
                    load_clause(ctx.borrow(), &[!a, b]);
                }
            }

            while ctx.part(SolverStateP).sat_state == SatState::Unknown {
                conflict_step(ctx.borrow());
            }

            prop_assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Sat);

            set_assumptions(ctx.borrow(), &enable_row);

            prop_assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unknown);

            while ctx.part(SolverStateP).sat_state == SatState::Unknown {
                conflict_step(ctx.borrow());
            }

            prop_assert_eq!(ctx.part(SolverStateP).sat_state, SatState::UnsatUnderAssumptions);

            let mut candidates = ctx.part(AssumptionsP).user_failed_core().to_owned();
            let mut core: Vec<Lit> = vec![];

            loop {
                set_assumptions(ctx.borrow(), &candidates[0..candidates.len() - 1]);

                while ctx.part(SolverStateP).sat_state == SatState::Unknown {
                    conflict_step(ctx.borrow());
                }

                match ctx.part(SolverStateP).sat_state {
                    SatState::Unknown => unreachable!(),
                    SatState::Unsat => break,
                    SatState::Sat => {
                        let skipped = *candidates.last().unwrap();
                        core.push(skipped);
                        load_clause(ctx.borrow(), &[skipped]);
                    },
                    SatState::UnsatUnderAssumptions => {
                        candidates = ctx.part(AssumptionsP).user_failed_core().to_owned();
                    }
                }
            }
            if chain {
                prop_assert_eq!(core.len(), 1);
            } else {
                prop_assert_eq!(core.len(), columns + 1);
            }
        }

        #[test]
        fn pigeon_hole_unsat_assumption_core_solver(
            (enable_row, columns, formula) in conditional_pigeon_hole(1..5usize, 1..5usize),
        ) {
            let mut solver = Solver::new();
            solver.add_formula(&formula);

            prop_assert_eq!(solver.solve().ok(), Some(true));

            let mut assumptions = enable_row.to_owned();

            assumptions.push(Lit::positive(Var::from_index(formula.var_count() + 10)));

            solver.assume(&assumptions);

            prop_assert_eq!(solver.solve().ok(), Some(false));


            let mut candidates = solver.failed_core().unwrap().to_owned();
            let mut core: Vec<Lit> = vec![];

            while !candidates.is_empty() {

                solver.assume(&candidates[0..candidates.len() - 1]);

                match solver.solve() {
                    Err(_) => unreachable!(),
                    Ok(true) => {
                        let skipped = *candidates.last().unwrap();
                        core.push(skipped);

                        solver.add_clause(&[skipped]);
                        solver.hide_var(skipped.var());
                    },
                    Ok(false) => {
                        candidates = solver.failed_core().unwrap().to_owned();
                    }
                }
            }

            prop_assert_eq!(core.len(), columns + 1);
        }
    }
}