1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
//! Conflict driven clause learning.

use partial_ref::{partial, PartialRef};

use varisat_internal_proof::ProofStep;

use crate::analyze_conflict::analyze_conflict;
use crate::assumptions::{enqueue_assumption, EnqueueAssumption};
use crate::clause::{assess_learned_clause, bump_clause, db, decay_clause_activities};
use crate::context::{parts::*, Context};
use crate::decision::make_decision;
use crate::model::reconstruct_global_model;
use crate::proof;
use crate::prop::{backtrack, enqueue_assignment, propagate, Conflict, Reason};
use crate::state::SatState;
use crate::unit_simplify::{prove_units, unit_simplify};

/// Find a conflict, learn a clause and backtrack.
pub fn conflict_step<'a>(
    mut ctx: partial!(
        Context<'a>,
        mut AnalyzeConflictP,
        mut AssignmentP,
        mut AssumptionsP,
        mut BinaryClausesP,
        mut ClauseActivityP,
        mut ClauseAllocP,
        mut ClauseDbP,
        mut ImplGraphP,
        mut ModelP,
        mut ProofP<'a>,
        mut SolverStateP,
        mut TmpDataP,
        mut TmpFlagsP,
        mut TrailP,
        mut VariablesP,
        mut VsidsP,
        mut WatchlistsP,
    ),
) {
    let conflict = find_conflict(ctx.borrow());

    let conflict = match conflict {
        Ok(()) => {
            reconstruct_global_model(ctx.borrow());
            return;
        }
        Err(FoundConflict::Assumption) => {
            ctx.part_mut(SolverStateP).sat_state = SatState::UnsatUnderAssumptions;
            return;
        }
        Err(FoundConflict::Conflict(conflict)) => conflict,
    };

    let backtrack_to = analyze_conflict(ctx.borrow(), conflict);

    let (analyze, mut ctx) = ctx.split_part(AnalyzeConflictP);

    for &cref in analyze.involved() {
        bump_clause(ctx.borrow(), cref);
    }

    decay_clause_activities(ctx.borrow());

    backtrack(ctx.borrow(), backtrack_to);

    let clause = analyze.clause();

    proof::add_step(
        ctx.borrow(),
        true,
        &ProofStep::AtClause {
            redundant: clause.len() > 2,
            clause: clause.into(),
            propagation_hashes: analyze.clause_hashes(),
        },
    );

    let reason = match clause.len() {
        0 => {
            ctx.part_mut(SolverStateP).sat_state = SatState::Unsat;
            return;
        }
        1 => Reason::Unit,
        2 => {
            ctx.part_mut(BinaryClausesP)
                .add_binary_clause([clause[0], clause[1]]);
            Reason::Binary([clause[1]])
        }
        _ => {
            let header = assess_learned_clause(ctx.borrow(), clause);
            let cref = db::add_clause(ctx.borrow(), header, clause);
            Reason::Long(cref)
        }
    };

    enqueue_assignment(ctx.borrow(), clause[0], reason);
}

/// Return type of [`find_conflict`].
///
/// Specifies whether a conflict was found during propagation or while enqueuing assumptions.
enum FoundConflict {
    Conflict(Conflict),
    Assumption,
}

impl From<Conflict> for FoundConflict {
    fn from(conflict: Conflict) -> FoundConflict {
        FoundConflict::Conflict(conflict)
    }
}

/// Find a conflict.
///
/// Returns `Err` if a conflict was found and `Ok` if a satisfying assignment was found instead.
fn find_conflict<'a>(
    mut ctx: partial!(
        Context<'a>,
        mut AssignmentP,
        mut AssumptionsP,
        mut BinaryClausesP,
        mut ClauseAllocP,
        mut ClauseDbP,
        mut ImplGraphP,
        mut ProofP<'a>,
        mut SolverStateP,
        mut TmpFlagsP,
        mut TrailP,
        mut VariablesP,
        mut VsidsP,
        mut WatchlistsP,
    ),
) -> Result<(), FoundConflict> {
    loop {
        let propagation_result = propagate(ctx.borrow());

        let new_unit = prove_units(ctx.borrow());

        propagation_result?;

        if new_unit {
            unit_simplify(ctx.borrow());
        }

        match enqueue_assumption(ctx.borrow()) {
            EnqueueAssumption::Enqueued => continue,
            EnqueueAssumption::Conflict => return Err(FoundConflict::Assumption),
            EnqueueAssumption::Done => (),
        }

        if !make_decision(ctx.borrow()) {
            return Ok(());
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use proptest::prelude::*;

    use partial_ref::IntoPartialRefMut;

    use varisat_formula::cnf_formula;
    use varisat_formula::test::{sat_formula, sgen_unsat_formula};

    use crate::load::load_clause;
    use crate::state::SatState;

    #[test]
    fn level_0_unsat() {
        let mut ctx = Context::default();
        let mut ctx = ctx.into_partial_ref_mut();

        let formula = cnf_formula![
            1, 2, 3;
            -1;
            1, -2;
            2, -3;
        ];

        for clause in formula.iter() {
            load_clause(ctx.borrow(), clause);
        }

        while ctx.part(SolverStateP).sat_state == SatState::Unknown {
            conflict_step(ctx.borrow());
        }

        assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unsat);
    }

    proptest! {
        #[test]
        fn sgen_unsat(formula in sgen_unsat_formula(1..7usize)) {
            let mut ctx = Context::default();
            let mut ctx = ctx.into_partial_ref_mut();

            for clause in formula.iter() {
                load_clause(ctx.borrow(), clause);
            }

            while ctx.part(SolverStateP).sat_state == SatState::Unknown {
                conflict_step(ctx.borrow());
            }

            prop_assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unsat);
        }

        #[test]
        fn sat(formula in sat_formula(4..20usize, 10..100usize, 0.05..0.2, 0.9..1.0)) {
            let mut ctx = Context::default();
            let mut ctx = ctx.into_partial_ref_mut();

            for clause in formula.iter() {
                load_clause(ctx.borrow(), clause);
            }

            while ctx.part(SolverStateP).sat_state == SatState::Unknown {
                conflict_step(ctx.borrow());
            }

            prop_assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Sat);

            for clause in formula.iter() {
                prop_assert!(clause.iter().any(|&lit| ctx.part(ModelP).lit_is_true(
                    lit.map_var(|user_var| ctx
                        .part(VariablesP)
                        .global_from_user()
                        .get(user_var)
                        .expect("no existing global var for user var"))
                )));
            }
        }

        #[test]
        fn sgen_unsat_incremetal_clauses(formula in sgen_unsat_formula(1..7usize)) {
            let mut ctx = Context::default();
            let mut ctx = ctx.into_partial_ref_mut();

            let mut last_state = SatState::Sat;

            for clause in formula.iter() {
                load_clause(ctx.borrow(), clause);
                while ctx.part(SolverStateP).sat_state == SatState::Unknown {
                    conflict_step(ctx.borrow());
                }

                if ctx.part(SolverStateP).sat_state != last_state {
                    prop_assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unsat);
                    prop_assert_eq!(last_state, SatState::Sat);
                    last_state = ctx.part(SolverStateP).sat_state;
                }
            }

            prop_assert_eq!(last_state, SatState::Unsat);
        }
    }
}