1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
//! Loading a formula into the solver.
use vec_mut_scan::VecMutScan;

use partial_ref::{partial, PartialRef};

use varisat_formula::Lit;
use varisat_internal_proof::{DeleteClauseProof, ProofStep};

use crate::clause::{db, ClauseHeader, Tier};
use crate::context::{parts::*, Context};
use crate::proof;
use crate::prop::{assignment, full_restart, Reason};
use crate::state::SatState;
use crate::unit_simplify::resurrect_unit;
use crate::variables;

/// Adds a clause to the current formula.
///
/// The input uses user variable names.
///
/// Removes duplicated literals, ignores tautological clauses (eg. x v -x v y), handles empty
/// clauses and dispatches among unit, binary and long clauses.
pub fn load_clause<'a>(
    mut ctx: partial!(
        Context<'a>,
        mut AnalyzeConflictP,
        mut AssignmentP,
        mut AssumptionsP,
        mut BinaryClausesP,
        mut ClauseAllocP,
        mut ClauseDbP,
        mut ImplGraphP,
        mut ProofP<'a>,
        mut SolverStateP,
        mut TmpDataP,
        mut TmpFlagsP,
        mut TrailP,
        mut VariablesP,
        mut VsidsP,
        mut WatchlistsP,
    ),
    user_lits: &[Lit],
) {
    match ctx.part(SolverStateP).sat_state {
        SatState::Unsat => return,
        SatState::Sat => {
            ctx.part_mut(SolverStateP).sat_state = SatState::Unknown;
        }
        _ => {}
    }

    ctx.part_mut(SolverStateP).formula_is_empty = false;

    // Restart the search when the user adds new clauses.
    full_restart(ctx.borrow());

    // Convert the clause from user to solver literals.
    let (tmp_data, mut ctx_variables) = ctx.split_part_mut(TmpDataP);
    variables::solver_from_user_lits(ctx_variables.borrow(), &mut tmp_data.lits, user_lits, true);

    let (tmp_data, mut ctx) = ctx.split_part_mut(TmpDataP);

    let lits = &mut tmp_data.lits;
    let false_lits = &mut tmp_data.lits_2;

    lits.sort_unstable();
    lits.dedup();

    proof::add_clause(ctx.borrow(), &lits);

    // Detect tautological clauses
    let mut last = None;

    for &lit in lits.iter() {
        if last == Some(!lit) {
            return;
        }
        last = Some(lit);
    }

    // If we're not a unit clause the contained variables are not isolated anymore.
    if lits.len() > 1 {
        for &lit in lits.iter() {
            ctx.part_mut(VariablesP)
                .var_data_solver_mut(lit.var())
                .isolated = false;
        }
    }

    // Remove satisfied clauses and handle false literals.
    //
    // Proof generation expects us to start with the actual input clauses. If we would remove false
    // literals we would have to generate proof steps for that. This would result in derived clauses
    // being added during loading. If we're running proof processors on the fly, they'd see those
    // derived clauses interspersed with the input clauses.
    //
    // We don't want to require each proof processor to handle dervied clause additions during
    // loading of the initial formula. Thus we need to handle clauses with false literals here.
    false_lits.clear();

    let mut lits_scan = VecMutScan::new(lits);

    let mut clause_is_true = false;

    // We move unassigned literals to the beginning to make sure we're going to watch unassigned
    // literals.
    while let Some(lit) = lits_scan.next() {
        match ctx.part(AssignmentP).lit_value(*lit) {
            Some(true) => {
                clause_is_true = true;
                break;
            }
            Some(false) => {
                false_lits.push(lit.remove());
            }
            None => (),
        }
    }

    drop(lits_scan);

    let will_conflict = lits.is_empty();

    // We resurrect any removed false literals to ensure propagation by this new clause. This is
    // also required to eventually simplify this clause.
    for &lit in false_lits.iter() {
        resurrect_unit(ctx.borrow(), !lit);
    }

    lits.extend_from_slice(&false_lits);

    if clause_is_true {
        if lits.len() > 1 {
            proof::add_step(
                ctx.borrow(),
                true,
                &ProofStep::DeleteClause {
                    clause: lits,
                    proof: DeleteClauseProof::Satisfied,
                },
            );
        }
        return;
    }

    match lits[..] {
        [] => ctx.part_mut(SolverStateP).sat_state = SatState::Unsat,
        [lit] => {
            if will_conflict {
                ctx.part_mut(SolverStateP).sat_state = SatState::Unsat
            } else {
                assignment::enqueue_assignment(ctx.borrow(), lit, Reason::Unit)
            }
        }
        [lit_0, lit_1] => {
            ctx.part_mut(BinaryClausesP)
                .add_binary_clause([lit_0, lit_1]);
        }
        _ => {
            let mut header = ClauseHeader::new();
            header.set_tier(Tier::Irred);

            db::add_clause(ctx.borrow(), header, lits);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    use partial_ref::IntoPartialRefMut;

    use varisat_formula::lits;

    use crate::clause::Tier;

    #[test]
    fn unsat_on_empty_clause() {
        let mut ctx = Context::default();
        let mut ctx = ctx.into_partial_ref_mut();

        load_clause(ctx.borrow(), &[]);

        assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unsat);
    }

    #[test]
    fn unit_clauses() {
        let mut ctx = Context::default();
        let mut ctx = ctx.into_partial_ref_mut();

        load_clause(ctx.borrow(), &lits![1]);

        assert_eq!(ctx.part(TrailP).trail().len(), 1);

        load_clause(ctx.borrow(), &lits![3, -3]);

        assert_eq!(ctx.part(TrailP).trail().len(), 1);

        load_clause(ctx.borrow(), &lits![-2]);

        assert_eq!(ctx.part(TrailP).trail().len(), 2);

        load_clause(ctx.borrow(), &lits![1, 1]);

        assert_eq!(ctx.part(TrailP).trail().len(), 2);

        assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unknown);

        load_clause(ctx.borrow(), &lits![2]);

        assert_eq!(ctx.part(TrailP).trail().len(), 2);

        assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unsat);
    }

    #[test]
    fn binary_clauses() {
        let mut ctx = Context::default();
        let mut ctx = ctx.into_partial_ref_mut();

        load_clause(ctx.borrow(), &lits![1, 2]);

        assert_eq!(ctx.part(BinaryClausesP).count(), 1);

        load_clause(ctx.borrow(), &lits![-1, 3, 3]);

        assert_eq!(ctx.part(BinaryClausesP).count(), 2);

        load_clause(ctx.borrow(), &lits![4, -4]);

        assert_eq!(ctx.part(BinaryClausesP).count(), 2);

        assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unknown);
    }

    #[test]
    fn long_clauses() {
        let mut ctx = Context::default();
        let mut ctx = ctx.into_partial_ref_mut();

        load_clause(ctx.borrow(), &lits![1, 2, 3]);

        assert_eq!(ctx.part(ClauseDbP).count_by_tier(Tier::Irred), 1);

        load_clause(ctx.borrow(), &lits![-2, 3, 3, 4]);

        assert_eq!(ctx.part(ClauseDbP).count_by_tier(Tier::Irred), 2);

        load_clause(ctx.borrow(), &lits![4, -5, 5, 2]);

        assert_eq!(ctx.part(ClauseDbP).count_by_tier(Tier::Irred), 2);

        assert_eq!(ctx.part(SolverStateP).sat_state, SatState::Unknown);
    }
}